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ABSTRACT

Time harmonic modal electromagnetic fields in two-medium half spaces

are investigated. For practical and numerical considerations, the primary

sources of the modal fields are chosen to be the spherical multipoles, and

the potential vectors are z-directed. It is shown that modal fields of

such combination are not able to represent a conventional spherical modal

field. The horizontal rotating potentials are added to ensure proper

representation and fast convergence.

The recurrence relations which transform the spherical Hankel-Legendre

functions into the Fourier-Bessel integrals are derived. The secondary

fields of the Sommerfeld's type are obtained for all spherical multipole

sources, and the added horizontally rotating potentials. The combination

of the modal fields are capable of representing arbitrary electromagnetic

fields resulting from radiation and scattering problems.

Results are given for scattered surface fields of a buried finite

dielectric cylinder.
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I. INTRODUCTION

Modal expansions of electromagnetic fields are fre-

quently a mathematical necessity in classical solutions

of electromagnetic problems. Recent development of the

unimoment method of computation has also made extensive

use of modal fields, which satisfy the radiation con-

ditions outside spherical surfaces [1], [2]. Indeed,

the application of the modal fields is essential in

terminating the finite difference or the finite element

equations at a spherical surface. It is quite evident

that the unimoment method can readily be applied to

scattering or radiation problems involving air-ground

half-spaces, if the modal fields satisfying the air-ground

interface boundary conditions are available.

The integrals which represent the potentials of a

dipole near an air-ground interface are known as Sommerfeld

integrals, which were first derived by Sommerfeld in 1909

[3] and 1926 [4]. They have been the foundations of

research in electromagnetic radiation by sources near a

lossy ground ever since. The objective of this paper is

to investigate the generalization of Sommerfeld integrals

for the modal fields so that they can represent arbitrary

electromagnetic fields near an air-ground interface.

2
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The generalization of Sommerfeld integrals has been

given by C.T. Tai [5], whose systematic approach to

Dyadic Green's function very elegantly arrives at modal

fields of Sommerfeld type. However, Tai's generalization

entails cylindrical sources, i.e., each of the exterior

modes is singular along the z-axis. Using Tai's modal

fields to terminate the finite element mesh, one would

have to use an infinite cylinder as a terminating surface,

such as shown in Fig. la. The matching points between

the finite element solutions and the modal fields would

spread fairly far along the cylinder, and the numerical

objective would be finding a continuous function f(X)

for the values of A along the integration path. The

above particulars are not attractive features for compu-

tational purposes. The ideal matching surface should be

finite and the ideal numerical objective should be a

discrete set of coefficients. In this paper we shall

attempt to generalize Sommerfeld integrals based on

spherical multipole expansions. The numerical application

of such generalized Sommerfeld integrals should result in

spherical matching surfaces, as shown in Fig. lb, and

discrete numerical objectives.

The fields concerned in the following discussions

are all assumed to have the exp (jwt) harmonic time

dependence.

3



II. MULTIPOLE EXPANSIONS AND VERTICAL VECTOR POTENTIALS

The first step in deriving Sommerfeld integrals is

to decide what type of primary sources are to be used.

The electromagnetic fields in a homogeneous isotropic

medium can usually be derived from the electric and

magnetic vector potentials, Ae and AM. as follows

E = V × A + ---- V V x A (la)m 3jw e
+ = × - 1
H Vx - ,- V x V x A (lb)e 3WU m

where e and U are the permittivity and the permeability

of the medium, w is the angular frequency and the potentials

A and A both satisfy the vector Helmholtz equations. The abovee m
potential representations are complete in homogenous source free

medium where the fields derived from the gradient of a potential

vanishes [6].

Our intention to obtain spherical matching surfaces

in numerical application limits our option to spherical

multipoles, i.e., the primary fields will be derived from

<Ae 1 h m mImi1.(2) (kr) pm(cos 6) e Jm0

Am M=-- n=Im \m,n (2)

where k = w/-pE is the wave number and z is a unit vector

normal to the ground plane. It is noticed that the vector

potentials are z-directed rather than the conventional

radial vector. The direction of the potential vector is

4 dictated by the need to satisfy the continuity conditions

of the planar air ground interface for the total fields.

The use of the conventional spherical potentials using

radial vectors does not lead to expressions which are

compatablewith air-earth interface field matching.

This particular combination of spherical harmonics and

4



z-directed potential vectors is not new. The complete

expression has been given by Tai [5 Appendix B]; however, the

modal fields derived from it have never been applied to solve

specific problems. For the convenience of the further

discussions, the fields derived from(2) will be named as

TM(z) and TE z) modes for A and A respectively.m,n m,n e m

The modal electromagnetic fields derived from (2) are

denoted by eTM(z) hTM(z) and -TE(z) hTE(z) The definitions
deotee m,n m,n m n m,n
of these notations are listed in Tale 1.

One of the most important questions about the modal

fields derived from (2) is whether the expansions can rep-

resent arbitrary radiating fields. The follow-

ing derivations will show that the modal expansions of a

class of radiating fields by TM (z) and TE (z) result in
m,n m,n

diverging series. Such a class of radiating fields include

the conventional spherical vector wave modes. It is found

that proper additional terms may be added to (2) to make

the modal expansion series convergent.

For clarity in the ensuing discussions, we should examine

the conventional curvilinear spherical vector waves obtained

from

< e =  r m,, h Ii ' ( 2 ) ( k r )  Pm( c O s  8) e j m  (3)

A M) m= - - n=jmj (b mn n

where r is a radial vector. These expansions were proved

-- 45



to be complete in the homogenous source free region where

the divergence of E and H vanishes (6] and have been applied

to numerous practical applications. we shall name the ex-

pansion modes of (3) as TM(r) and TE(r) for A and Am,n m,n e m

respectively. The modal fields are denoted by eTM(r)m,n'
hn, and e , TE(r)as shown in Table 1.
m,n m(,n m,n

We first study the singularities of TE(r, TM(r)

and TE(z) , TM (z ) fields as r - 0. The spherical Hankelm,n m,n

function and its first derivative have singularities at

r - 0

lim h (2) (kr) - (kr) -n
r nn

r 0

d h ( 2 ) (kr)
lim n - j (kr) (n+l)
r 0

Hence the modal electric fields have the singularities

as follows:

tim e TE (z) r(n+l)

r0 m,n

lim -TM(z) -(n+2)r-0 em,n

lim eTE(r), - r-n
r- 0 m,n

lim eTM (r) -r (n+l)

r-0 m,n

6
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The expansions of different numbers of m are

decoupled because the Fourier series modes are mutually

orthogonal. For a particular value of m, we found that

T(z) (z)as r 0 (z) and TM have a singularity sequence ofm,n m,n-(Iml+:l ) ,  , .I l (r) a d (r)

r -(I+2) whereas TErn and TM , n have
r-ImI - (ImI+l)

r r( , ... Therefore the lowest singularity

term r- 'm is missing for the TE (z ) , TM(z) modes. Thism,n m,n

suggests that additional terms of proper singularity

must be added to TE and TM(z) modes to representm,n m,n

arbitrary radiating fields.

To show that the TE (z ) and TM (z ) modes do not yieldm,n m,n

converging series when expanding a certain class of

radiating fields, let us take a simple example of the

fields radiated by a horizontal rotating dipole. The

vector potentials of the dipole can be written as

4. (2)Ae = (^X + j ^) hO(2 (k r )  (4)
e Y 0

The electromagnetic fields generated by (4) are found
TMr)

to be exactly the same as those of the TMi( mode. We

shall find the coefficient an, 8n in the following

expansion

eTM (r) = £fl TM (z) TE (z(
e, 1  =a nel n S jk"e - (5)

n=1 n n" nJ

p7



TM (z) -*TE (z)
It should be noted that neither TM(Z) nor emn modes are ortho-

gonal on the surface of a sphere.

By using the relations given by Tai [5, p. 228], such as

-TE(z)= 1 I TM(r) n TTE(r) + n+l TE(r) (6a)
l,n nn+l)k l,n (2n+l) (n+l) l,n+l (2n+l)n l,n-i

-TM(z) 1 k-TE(r)+ n TM(r) n+l -TM(r)

e l,n = Jn(n+l)ke l,n (2n+l) (n+l) el,n+l +(2n+l)n el,n-l

and substituting (5) into (6a) and (6b), one can solve an and

$n via a set of linear equations involving a tri-diagonal matrix.

The results are

(n = 0 if n is odd (7a)
n+

(_i) + 1 (2n+l) if n is even
n(n+l)

$= 0 if n is even (7b)

I nnn- 1

(_I) (2n+l) if n is oddn (n+l)

Examining (6a) and (6b) one finds that a and 8 have

asymptotic behavior of 0(n - ) for large orders of n. The

asymptotic form of the spherical Hankel function for large

b8
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n [7, eq. 37] is

(2) 1 /2(n+ ) (n+ )
n h (kr) (n+)
n-n V\~kr) \e. (kr)/

where e is the base number of the natural logarithm. Com-

bining the slowly convergence of an and n  and the rapidly

increasing of hn (2) (kr) at (n + , )n, it is

thus shown that the expansion of (5) diverges for all kr.

Similar conclusions can also be obtained for other TM(r)
m,n

modes.

The fact that TM(z) and TE(z) yield diverging seriesm,n m,n

when expanding the field of a rotating dipole and the TM(r)
m,n

and (r)modal fields has made the expansion of 2) un-TEm, n

usable for general applications in scattering problems. To

remedy this situation, additional terms of proper orders of

singularities must be included in (2). It was found that

the field of a rotating dipole given by (4) can provide the

singularity needed for m=l. Hence, we suggest adding two
circularly polarized vector potentials, e.g.,

( Zj) ( -m 1 h (2 ) (kr)Pm (osS)e±Jm(8)

where x and y are unit horizontal vectors on the rectangular

coordinates. These rotating modes will be named RTM±(m+l)

and RTE±(m+l) for Ae and Am  respectively. The modal

"RTM -RTM and ,
fields will be denoted by et(m+l) (M+l) and e±(m+l)

9



()RTE Indeed, these rotating modal fields are similar
± (m+l)'

to the lowest order modes for each m of the conventional

spherical vector waves. That is, they are similar to the

modal fields of TM and TE(r)±m,m ±m,m

The proper general solution of Maxwell's equations out-

side a sphere in terms of (2) and (8) is thus

(~~ ~ E(ZTM (z)
cc m~ e m: n

< I~ ~2 a e m,n -eTE (z)~~ 4 n-n \tTz) | -neTM(z)|

m=-= n= \m h h J
m,n m,n

rO m RTE )+ m RTM

m m

-+ RTE (+ -m

-;RTE\ ( N00ee-e

+ -m - RTE -RTM-m (hn-m

(9)

where Um,n ' m,n 'm and

are the expansion coefficients. The modal fields of the

expansion are defined in Table 1.

It can be shown (81 that any one of the conventional

spherical vector modal fields can be expanded in a finite

number of terms by using (9). The convergence rate of (9)

is the same as that using M(r) and TE (r) modes when

solving the same problem.

10
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Table 1. The Definition of the Primary Modal Fields

MODES VECTOR POTENTIALS MODAL FIELDS

T(Z) A 1 (2) ;j TE(zL. 4x±rT nz h~ (kr)Pm(cosO)e±m em n m

TE(Z)= j 1- xx'±m,n kZ m

A 1 h(2~ )P j -aTM(z) = e=-z2-.TE(z)
±m,n e zeZ n+mn ki~ e=~x hm,n

ATM~)= v-11 -TE(z)

±m,n A =e ±-m,n

!'TE, Am h ±~ (kr) ;e A Xm
m k m-+

pfl (cos6)e±Jm) ARTE jL1 VxVxA

TM A ~~±j) 1 h.(2 (kr) *T j! VxVxA +m~iRT

RT A~T VX~e e~ Zh
rn- em k ml k *Re

A = (krs)ecos8) ±m, m1.T

m n n

TE (r) .1* VxVx-
±m,n Ak m

TM~ A r h (2 ) (kr) Pm (cosO) e±jm -'TM(r) ~z 2.TE(r)±me n n e ~ - k VXVXA Zh+mne ±-m,n

~TMr) vx- = ;TE (r)
±m,n Aee ±m,n

* NOTE: Z



III. THE FOURIER-BESSEL INTEGRALS OF h (2 ) (kr) P m (cosa)

The multipole expansions discussed in the last

section are for the primary fields, which are valid in an

infinite uniform space. To find the fields of the multi-

poles near an air-ground interface, the multipole fields

must be expressed in cylindrical harmonics so that the

.secondary waves can be derived. We shall derive the

Fourier-Bessel integrals for the spherical Hankel-

Legendre functions in this section.
m ±jm n

Since both h(2) (kr) pm (cos 8) e- and
nn

Jm (Xp) e e are solutions of the same scalar

Helmholtz equation

V2 + k2 0 (10)

one may represent the spherical harmonics by the superposition

of a complete cylindrical eigenfunction [ 6 , 9 1. That is

h ( 2 ) (kr) pm (cos 8) = sgn (z)]n-r / mf (A) J ( A ) eUIZidA (11)n n 0

where u =N2- k 2 , Real(u) > 0, and sgn (z) = 1 for positive

z and -1 for negative z. The function f mn(A) is an amplitude

function for the transformation. The first special case of the

Fourier-Bessel transform in (11) is for m=n=0 of a dipole, as shown

by Sommerfeld in [9].

h (2) (kr) =je-jk j L j(p e-UJZ1 X(2
•0 kr f ju - 0()d 12

0

12



Hence the function f0 ,0( ) is

0,0 k (13)

The functions for other orders of m and n can be obtained

by recurrence relations.

The following two recurrence relations are proved in

Appendices A and B, respectively.

Recurrence Relation 1.

h(2) _m+l a h ( 2 ) kr m (o )
h (kr) Pm+l (cos e) = -(2m+l) -r (cos 6)]
m+l m+l 1kP hm (rPm

m(2m+l) [h(2) (kr) Pm (cos 6)]kr sine m m

(14)

Recurrence Relation 2.

a [h ( 2 ) (kr) Pm (cos 6)] = (n+m) h ( 2 ) (kr) Pm (cos e)
Tkz n n (2n+l) n-l n-

(n-m+l) h(2) (kr) Pm (cos 6)
(2n+l) n+l n+l

(15)

The above recurrence formulas are unique in

that they relate spherical modal potentials rather than

single variable special functions. The physical interpre-

tations of these formulas are also of interest, but we shall

not attempt to discuss these here.

13



It is noted that the first recurrence relation raises

the order of m , and the second raises n for a fixed

value of m

The formulation of f (A) is related to fmm ()
m+ 1,m+l 1'

by substituting the integral of (ll)into the first recur-

rence relation (14). That is

f fm+l,m+l.(A) Jm+l (An) e -u lzI dA

0

= - (2m+l) fm,m J(()

o (A -U}Zmx]

f (2m+l) f m m()- [ Jm+l (A) e d (16)

0

This relation holds for all values of p and z, hence

fm+l,m=l( ) = (2m+l) (A)( (17

Using the initial formula of f0 ,0 (A) in (13) and the relation

(171, one has a general expression of fm (A) as follows:

' for m -- ~~~0, 1, 2....... Because p cse -o ehv
f' m-

f m (A) --- 0 (19)

Similarly, by substituting the integral of (I),the

second recurrence relation (15) leads to the following

* relation:

b 14

1'~M'M
f M j )M--'m (0 (18



Recurrence Relation 3.

(2n+l) f (A) + (n+m) (20)
fm,n+l(X) = (n-m 4l k m,n (2n+l) mn-l

A complete formulation of f m,n() can readily be obtained by

(18), (19) and the third recurrence relation (20). The

recurrence relations (17) and (20) resemble those for the

associated Legendre functions. We found that f m,n(X) can

be written in a closed form to be

f M (n-m+l) X Pm ( - j  (21)

Although (21) may also be obtained by other approaches,

they have not been explicitly shown in open literature.

The approach we have presented here is more direct and

computationally appealing than integration of plane waves in

the complex plane.

It is worth noting that the Fourier-Bessel integral

is equivalent to the Fourier-Hankel integral [9].

h(2) (kr) Pm (cos 3)= [ sgn (z)] n- 2 "  f fmn(X) () me
n n -C (22)

The integration paths and branch cuts in the complex X-plane

for(ll) and (22) are shown in Figure 2. The path P1  is a

permissible integration path of the Fourier-Bessel integral

(21), and path P2 + P1  is for the Fourier-Hankel integral (22).

15



IV. THE GENERALIZED SOMMERFELD INTEGRALS

Let the multipoles be at a depth d underground.

The coordinates in the meridional plane are shown in Figure 3.

The relative dielectric constants of regions I and II are

C1  and E 2  respectively. We assume the same magnetic

permeability in both regions, although it is straightforward

to consider the case of different magnetic permeabilities.

The vector potentials in regions I and II are A

(or Ae) and A (or A e). The fields in region II arem e

decomposed into primary and secondary waves as follows:

-II -Pri . -Sec (23.a)
A =A A A2.am m m

II -Pri -Sec (23.b)
A =A + A .be e e

The primary waves are the multipole fields in an infinite

space, which have been discussed in previous sections. The

secondary waves are the fields due to the air-ground interface.

Owing to their basic differences in the formulation,

we shall discuss the derivations for TE(z), TM(z), RTE, and

RTM fields separately.

1. The Vertical Magnetic Multipoles, TE(z)±m,n Fields

The primary field for TE(z) in region II are
±-m, n

iPri =A Pri2 = £ h(2) (k2 r) Pm (cos 6) e±jmO (24)m m n 2 n

16



Using the Fourier-Bessel integral (ll)derived in Section III,

the primary fields become

me fm,n(X) J(XP) e dX (25)
0

where f (,n(A) is given in Section III, and u2  - k 2"

Real (u ) z 0. Note that we shall use (25) only when z>0 in the
followig derivations.

The secondary field in region II can be represented by

the following complete cylindrical field integral

Sec =Sec ±imo (A u2 (z-d)
em Am m = f 9M Jm(Ap) e dA (26)

0

The field in region I is represented by

A, =A m  = 2 eJm0 h(X) J-() eu(z-d) dA (27)
m m = Jf fl/ M (Q

9 0

where u k - , Real (uI) 2 0.

The functions g(X) and h(X) are obtained

by employing the boundary conditions on the air-ground inter-

face. The corresponding electric and magnetic fields from

the TE(z) vector potentials are
±_m, n

_m A + (28 .a)
p m - j A

Dl 2 2

+A+ ± jA m + (28 .b)
WI L paz P az aVkz 2 J

17
4 ,-"~ ~



The sufficient conditions for the continuity of tangential

electric and magnetic fields (Ep, E0, Hp, and H1 ) on the

interface between regions I and II are

[A I~ = A ]zd(29.a

and

[aziz=d = 1 (29.b)

Substituting (23.a), (24), and (27) into (2 9 .a)

and (29.b), we have

e ± m  f[fm,n() e + g(X) - h( Jm (Xp) dX = 0

0 (30.a)

e± m o u2 fm,n(X) e 2 u2g(X) u 1lh() Jm(Xp)dX = 0

0
(30.b)

The conditions of (30.a) and (30.b) must be true for all

and p , hence

-u2d

f (M) e + g(X) - h(X) = 0 (31.a)m, n

-u2d

u 2f m,n() e - u2g(X) - ulh(X) = 0 (31.b)

The functions g(X) and h(X) are obtained by solving

31.a) and ( 31.b)

18
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2u -uu 2d
g(X) - f e (3 2.a)

u 2 + uI m,n

h 2u2  u(32.b)

h(X) 2 + u1 m,n

Replacing g(X) and h(X) in (26) and (27) by the above

expressions, we obtain the solution of TE(z) fields±m, n

for z > d and z < d as follows

2u -u d-u (z-d)m u2 f Ul fmn i J(XP) e dX

0 (33.a)

Se±Jm [h (2)(k 2 r) Pm (cos e)m In 2 n

+ fu 2 -u 1fm MA j (Ap) e-u 2 (2d-z) d] (3bfu2 + U 1fm,n~l Jm~)ed(3b

0

Taking m = 0 and n = 0, one finds that the solution

given in (343.a) and (33.b) for TE(z)0, 0  is exactly the same

as that of the Somiaerfeld integrals for a vertical magnetic

dipole buried underground at a depth of d. Note that the

Hertz potentials, 7 e and 7m, as used by Sommerfeld and the vector

potentials used here differ by constant multipliers as

Ae = JE1Te

(34)

Am = JWLITTm
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2. The Vertical Electric Multipoles TM(z)+m,n Fields

The general expressions for fields of TM(Z)+m,n in

regions I and II are identical to Eqs. (23), (24) and (25) by

replacing Am  with Ae

The electric and magnetic fields corresponding to the

TM(z) vector potentials are±m,n

= e2A 3Ae 2 a2Ae
2-m -z 2e + -k A (+2.a)

3Ae

e m A + e (35.b)
p e 9 p

The sufficient conditions that the tangential components of

electric and magnetic fields be continuous on the interface

between region I and II are

r a-I < (336. a)

z=d 2 z=d

Enforcing the boundary condit:ions at the air-ground interface,

we have z-ud uz

e ~ m u f 2 (X u 2 - ( Xg(X) Ah() Jm(XP) dX = 0m,n E2 I00

(37.a)

_u2 d
e f fm,nM e + g(X) - h( m (Xp) dX 0 (37.b)

0

20
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Equations (37.a) and (37.b) must be true for all p and ,

so that the integrands are zero, i.e.,

u2  -u2d u2  u0
-(X) e - g M - - (38.a)
£2 m,n £2 Cl

-U 2 d

f (X) e + g(X) - h(X) = 0 (38.b)
m, n

Solving for g(X) and h(X), one obtains

g() = E 2  mE (2) e 2  (39.a)e 1U 2 + E:2Ul1 m,n

2 :lU 2 -u d

h(X) = f u f M () e 2 (39.b)
1 U2 + 12ui m,n

The general solution of TM(z)m,n fields for z > d and

z < d are obtained by replacing g(X), h(X) in (33), (34)

with the above formulas. We then have

- (o J (Ap)2-u 2d-u 1 (z-d)

Ae - z e fj C 1lU2 + E 2u1 fm,n iX d

0 (40.a)

- ±jm (2)
AI = 2e h (k2r) Pm (cos 0)
e n n

00 ', u2 - '2u1  -'u2 (2d - z )

+ f 1U2 + 2 U fm,n(X) J (XP) e dA1 (40.b)

0

1 21

211

. " I I -l l : : l J - I .. ,.. . . r " - "



The solutions given in (40.a) and (40.b) for TM(z)0, 0

are exactly the same as those of the Sommerfeld integrals for

a vertical electric dipole buried underground at a depth d

except for the differences between the vector potentials and

the Hertz potentials, as given by (34).

3. The Rotating Magnetic Multipoles, RTEtm Fields

The primary fields of RTE+m for m = 1,2,3,... in

region II are

jPri = APri ( jY) = ( j±JY) h (2)(k 2r)P . (cos e) e ± j ( m- 1 ) 0
m m n -i

_ujmO U2 1zl
(0 j-) e. m  f (X) J (Xp) e dXI rnf-i,mr-i rn-i

0
(41)

For the same reason pointed out by Sommerfeld for a horizontal

dipole, it is required that the vector potentials of the

secondary fields have a z-component in order to satisfy the

boundary conditions of the air-ground interface. Therefore

we assume the secondary fields in region II and the total field

in region I as

-Sec = ( t Ar +Ar z

Am ( m mz (42.a)

-1 t tAI = ( ± j) A + A 2 (42.b)
m m mz
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The superscripts "r" and "t" in the above equations denote the

reflected and the transmitted waves due to the lossy-ground

surface.

The potential components can be represented by the

following integrals of the cylindrical eigenfunctions:

Ar -±m~f -u 2 (d -z)
Arm g( Jm (A) e d ( 4 3 .a)

i -u 2 (d-z)
Arz = e - j m  gz(X) Jm(Ap) e 2 dA ( 4 3 .b)

0

A = e -+ j m o h(X) Jm (Xp) e dA (43.c)

m f i-i
0

Amz =e Mjm G h(X) Jm(Xp) e dX (43.d)

mzf

0

The corresponding electric and magnetic fields for

the RTE= modes are

a~ 8m [am (rn-i) Am j

mz fazmz

, (44.a)

the 2 mA m z
4. 3 Am (-) Am 2

wpH= ." 1 A m + a0
2  p a0  + m2 paz

m i m rei(m-l AJ ± _ j nain -2 r- 2 mz

mlkA A + _-; j (44.b)
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The sufficient conditions for the continuity of the tangential

electric field at z = d are

[aA Pr i  3A r ]  B Amt

LA i a z z=d a-- - z=d (45.a)

mzz=d z=db)

The conditions for the continuity of the tangential magnetic

field at z = d are
C Ari r [Atl2 + ] = i z=d (45.c)
C rz=d =zC [A

r t m-l)At
mz mz m _M1 A mz 3z I z=d = ap p m z=d

Pri r

[ D + -A - ( r- ) P r i _ ( r- ) r+_ - A A (45-d)£p ap p m p z=d

Substituting (43.a) and (43.c) into (45.a) and (45.c), one

can solve for g(X) and h(X).

lU 2 -L£ui-d
g(M) 1 2 12U fm(X,m-l(X) e (46.a)

1 u2 +C2 u1 -,l

2c 2 u 2  -u2d
h(A) = Liu 2 + E 2u fmtl,mjl(X) e (46.b)

The functions gz (X) and hz (X) are derived from (45.b)

and (43.d).

(C1 - C2)2u2X -u d
g (X) = h() = 12 2 f (X)e 2

z z (u 1 + u2)(E:1 u2 + E u1 ) rm-l,m-l

(46.c)
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The complete vector potentials of RTE _M fields for z > d

and z 4 d are readily obtained as follows:

A m (x +j )e mC) f 2U+ C1. u2 fm-l,m-1(X) J1m1(xp)

0
-u 2 d-u (z-d)

e dX

Aetjm / (C i-E:2 )2u2X

zII f ru Im +co 20E2uI+ ) e-jm-1 l)4 P

m- 2- 2- 1 ni- d 47a

(U 2) m( -  - 1 m-lm-2
l )+: 2 ul

0Q

+ e C 2 1 I lIu2 fm-l,m-l(X

- (XP) e-u 2 (2d-z) d

+ (V (el - E 2 u2 x

fJ(u 1 + U)(:u+ E, U,) (X)M-

-ud-uI (d-)

em CXp) e dX (47.b)

The solutions given in ( 47.a) and (47.b) for RTE

are the same as the Sommerfeld integrals of a buried

horizontal magnetic dipole at a depth d rotating counter-

clockwise (for RTE +1 or clockwise (for RTE 1 ).

25



....- --- -"-.. .. . ..... _

4. The Rotating Electric Multipoles, RTM+m Fields

The general expressions for the primary fields of

RTMm for m = 1,2,3,... in region II are identical to "qs.
(41), (42) and (43) by replacing Am with Ae and Amz with Aez.

The electric and maqnetic fields for the RTM m modes are

(r2-i +M1)

j_ [2A + 2e. -rni + P2 Ae pzwe2 e ap TT

[k2 + amDA e r(m-l) AAmz 

e p ap p 3 z

[ 2Ae (m-i) aAe2 [k2 mz
+-- 2 + [kAmz + 2 (48.a)

3A A [aAe (m-i)
H S ±J -Z P +Jp A ej

aA
±jmA ez ez ( 49 b)

The conditions for the continuity of the tangential electric

field at z = d are

SaAPri aAr- 1aA 
e + e __ + (49.a)

,az az Jz=d L z  z-d

ez] z=d A z=d

4- 26
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The conditions for the continuity of the tangential magnetic

field at z = d are

[ Pri ri  A1r

A i+ A =(49 .c)

r e] e (-)Ar ml

lzd L~zzd

ee het

j3A r 1 [IAt 1[rAez - L5 ez - (i-i) At]
£j2r aZ z~d C1 z z=~d =l C1a0P e d

A Pri r +. r f) 
( 5ma)1 3 e 4 e _ (m-l A~r - Am- ]

£2 apap p e p e d

49.d)

Enforcing the boundary conditions at the air-ground interface,

we have

U2  -u e 2d

-I h(X) = u 2  fm~i,m l() e2d (5:-.b)
U2 + u 1

The functions gz(X) and h z(X) are obtained from (49.b)

and ( 49.c) .
(£1 - C2 )2u2X fu2dgz(A) = h ( £u+X) mlmlA

,z' z (CIU 2 + E2U ) (uI + u2' m-,m-l

50. c)

The complete vector potentials of RTM m fields for z > d
'a

and z < d are obtained as follows:
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I = (X _ jy) e±j (M-l) r 2u 2eu 2 +u1 fm-l,m-l (X) Jm-j ( xP)
0

-u 2 d-u I (z-d)e d

+ 2 e± c (i- 2)2u2M xP)
f(u 1 + ( 2 + 2 i 1+1u 2 ) fm-l,rm-l m
0

-u 2 d-u 1 (z-d)e dX (51.a)

*~1= rnp-i

Ae (R- ±jy)hr (k2 r) P (cos 6) ee YM-1 2 m-1

+jm-) (u 2 9- e (m1)

+ (± j y) e (u2+U- f m-lm-i(X) m-l ( x p)

0
-u 2 (2d-z)

e d

+ 2 e±j f 00( - E2 )2u 2 x f J (xp)
f (u 1 + u2) (E 2 u1 + 1Un2 m-lm-l m
0

-u 2 (2d-z)
e dX (51.b)

The solutions given in (51.a) and (51.b) for RTM±I

are the same as the Sommerfeld integrals of a horizontal

electric dipole, buried at a depth d, rotating counter-

clockwise (for RTM +) or clockwise (for RTM 1 ).

28
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V. RESULTS

Utilizing the exterior modal fields generated by the Generalized

Somrerfeld's Integrals, we are able to compute the scattered surface fields

of a buried dielectric finite cylinder. The scattering configuration is

shown in Fig. 4. Figure 5 shows the surface area where the fields will be

computed. Figures 6-10 displace the 3-0 and contour plots of the scattered

fields for 700 MHz and 1000 MHz.
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VI. CONCLUSION

There are several numerical ways to solve radiation

or scattering of electromagnetic fields near a lossy half

space; notably, the method of moments [11, the extended

boundary condition method [ 121, and the unimoment method

(1]. All the methods in one way or another make use of

the celebrated Sommerfeld integrals. The problem may also be

considered as a limiting case of scattering by two non-

concentric dielectric spheres with one imbedded in the other

[13]. But that special approach entails such complex

addition theorems and integral expressions that only the

zeroth order azimuthal mode has been obtained.

In this paper, we have presented the Qroundwork for the

application of the unimoment method to solve the scattering

by buried obstacles, which requires the generalization of

the Sommerfeld integrals for multipole sources. For success-

ful numerical appli'ations, we find it necessary to use

spherical harmonics combined with z-directed potential

vectors. The modal fields so obtained, however, appear to

be inadequate in representing a conventional spherical mode.

While the situation is duly corrected by addition of two

horizontally rotating potential vectors for the lowest order

azimuthal modes, further theoretical investigation of this

unexpected discrepancy is definitely warranted.
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The differences between the generalized Sommerfeld

integrals we have put forth and those given by C.T. Tai have

been discussed. It is interesting to note that should we

use C.T. Tai's formulas in the unimoment method, the

numerical objective would be to find f(X) in the integrals,

such as,

u2-u I  -u 2 (2d-z) (52)f u2+u1  A

And, using the formulas we derived, the numerical objective

is to find A in the summation of the typen

X Pm _j U u2-ujm(X ) dX (53)

An k u2 n 2 +u1n=m 0

which is numerically more preferable than (52).

All the formulas presented have been numerically

tested and found to be applicable to solve scattering by

buried obstacles.
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Terminating
surface + O/ t

Matching
Spoints

--- Finite element
Air region

Ground

Figure Ia. The terminating surface of the finite
element method using Tai's modal fields.
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Air

Terminating surface I

,... Matching points

Finite AAA

element
region

Figure lb. The desired terminating surface of the"
finite element method using proper modal
fields.
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Figure 2. Branch Cuts and Permissible Paths of

integrationl.

V 34



z

ZI

S reg io n r•• °o

E2  region ] r )

p

Figure 3. Coordinates in the eridional Plane

(0=0 and *=n).
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Incident angles 0i = 00, 450

-+ i

Incident polarizations = Eor H1

Frequencies f = 700, 1000 MHz

Figure 4. scattering configurations and
computational parameters
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3D and contour plots x- niec
in this square on
the air-ground inter- y
face (z =0)

- - - - air

- - - ground

dielectric object

(a) H-Y incidence

z E-Y incidence

3D and countour
plots in thisX
square on the air-
ground interface

- - air
- -

- ground

dielectric object

(h, [-V incidence

Fiqu-p ~ The square on the ground planp in which the 3D
ind contour pjlots, of the scattered electric

4 field-s will be shown
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(a) 3-D plot for E-Y incidence (b) Contour plot for E-Y incidence

Figure 6. 3-0 and contour plots of scattered E-field
amplitude on the earth surface

( =00, frequency 700 M11z)
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Figure 7. 3-0 and contour plots of scattered E-field
amplitude on the earth surface
(0 i 0*, frequency 1000 MHz)
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APPENDIX A. Proof of Recurrence Relation 1

2) dhm2 ) (kr)[h ( )  Pm(Cos 8H pm(cos 8) sin 83 mrm m dkr m

1i h(2) (kr) sin e cos e dPm(Cosa)
kr m d cos8

I r m (kr) h(2) 1 p m+ (cos 8)krm m+l (2m+l) m+l

m h 2 ) (kr) m+l(cos 8) - m Pr(cos 8)]
h(2 ) m r 2m+1 m+l sin 8 m

h (2 ) (kr) pm(cos e) - 1 h (2 ) (kr) Pm+(Cos 9)
kr sin 8 m m (2m+l) m+l m+)

Recurrence Relation 1 is obtained by multiplying both sides of

the above equation by -(2m+l).

APPENDIX B. Proof of Recurrence Relation 2

dh (2 ) (kr)a, (2) pmco m
[-hn  (kr) Pm(cos 8)] s8 p(cos 8)
aznn dkr n

dPm (cosa)
+ - (2) (kr) sin2 a n

kr n  d cos

h (2) (kr) h (2 ) (kr)] cos 8 Pm(cos 8)
kr n n+l n

+ k. h (2) (kr) [(n+l) cos 8 Pm(cos 8) - (n-m+l) Pm (Cos 8)]
+kTr n n n+1

-h (2)(kr) cos 8 Pr(Cos 8) + (n+m) h2)(kr) pm (cos 8)
n kr n n-i
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- (n-m+l) h(2 (kr) cs
(2n+l) n+ P n+l (Cos a)

+ (n+m) [(2n+l) h (2 ) (kr) - (2)(kr)] Pn (Cos e)(2n+l) kr n n+l n-I

(n-m+l) h (2 ) (kr) Pm (cos e)
(2n+l) n+l n+l

" (n+m) h (2 ) (kr) pm (cos e)(2n+l) n-i n-1

Hence Recurrence Relation 2 is proved.
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